

Fine mapping of a major quantitative trait locus qSS.C9 associated with seeds per silique in *Brassica napus* L.

Dengfeng Hong, Shipeng Li, Lei Chen, Guangsheng Yang*

Huazhong Agricultural University, Wuhan, 430070, China

Objectives

- Background
- Plant materials and method
- Results

Background

Background

- Seeds per silique (SS) is one of the three direct components (silique per plant, seeds per silique and seed weight) of the seed yield per plant in rapeseed.
- Seeds per silique (SS) is controlled by nuclear genes (Wei et al., 2000) and has a high inheritability(Shi et al., 2009 and Zhang et al., 2011)

Background

Population parental lines	Population size	Population type	References
Express617×R53	250	DH	Radoev et al.2008
Tapidor×Ningyou7	202	DH	Shi et al. 2009
HZ396×Y106	140	DH	Zhang et al.2011
Quantum×No.2127-17	258	DH	Chen et al.2011
8008×4942C-5	181	DH	Qi et al.2014
Zhongyou 821 ×No. 2127-17	192	RIL	Cai et al.2014

• Up to now, 24 quantitative trait loci (QTLs) related to seeds per silique have been reported, but none of these QTLs has been cloned thus far.

Plant materials and method

Genetic and correlation analysis of silique-traits in *Brassica napus* L.by quantitative trait locus mapping

- A F₁ plant derived from two inbred lines(HZ396 and Y106) differing in seeds per silique were used to generate 140 double haploid lines.
- The phenotypic performances for the parental lines and the DH population were carried out over 3 years and two locations
- A linkage map comprising 150 SSR and 195 AFLP markers covering 1,759.6 cM was constructed

Phenotypic variation for silique length and seeds per silique as well as seed weight in the DH population

			Par	rents		DH population				
Years	Locations	Traits	HZ396 Mean ±s.d.	Y106 Mean ±s.d.	T-test for parents	Range	Mean ±s.d.	CV (%)	Skew	Kurt
2007	Wuhan	SS	11.0±2.6	27.3±3.7	19.14*	4.5-31.5	21.7±5.9	27.26	-0.76	-0.25
		SL	3.64±0.60	5.78±0.39	13.63*	2.99-6.30	4.79±1.11	23.17	-0.19	-0.25
		SW	4.46±0.41	4.31±0.15	5.63	1.52-5.20	3.32±0.71	21.39	0.41	-0.37
2008	Wuhan - I	SS	11.5±2.3	26.7±2.0	28.59*	4.4-32.6	21.28±7.29	34.26	-0.61	-0.87
		SL	3.39±0.28	6.12±0.60	13.01*	2.57-6.00	4.63±0.74	15.98	-0.31	-0.6
		SW	4.11±0.22	3.89±0.17	5.79	2.09-5.1	3.23±0.72	22.29	0.74	-0.28
	Wuhan - II	SS	7.7±3.1	25.90±2.1	21.28*	4.0-31.8	20.46±6.44	31.48	-0.67	-0.32
		SL	3.38±0.43	5.31±0.45	13.92*	2.78-6.60	4.7±0.73	15.53	-0.22	-0.11
2009	Gansu	SS	13.2±2.4	29.0±1.7	14.95*	3.7-35.3	23.44±8.11	34.60	-0.70	-0.73
		SL	3.69±0.14	6.84±0.45	16.73*	2.71-7.40	5.07±0.86	16.96	-0.30	0.09
Trait SS		S	SL			SW				
SS	5			0.56		0.29				
SI	<i>SL</i> 0.76**(0.73**)					0.1	9			
SV	V	-0.57**((-0.62**)	-0.44**(-0).37**)				
h^2 ($h^2(\%)$ 82.5 76		76.9	875						

Mapping QTL for silique length , seeds per silique and seed weight

				2007				20	08				2009	
	a)连锁群	OTL位置					- I			- II				
	Linkage	Position			c)PVE			PVE			PVE			PVE
QTL	group	(cM)	LOD	^{b)} A	(%)	LOD	А	(%)	LOD	А	(%)	LOD	А	(%)
qSL.A3-1	A3	42.2-56.4				2.84	0.25	11.16	2.82	0.28	9.16	2.79	0.29	10.70
qSL.A3-2	A3	56.5-61.7				3.54	0.23	8.85						
qSL.A3-3	A3	62.1-67.2										2.63	0.22	6.48
qSL.A4	A4	0.6-18.7	2.19	-0.19	7.08									
qSL.A7-1	A7	11.1-18.0							2.08	0.18	5.71			
qSL.A7-2	A7	57.9-68.1	2.81	0.19	7.90									
<i>qSL</i> .A8-1	A8	0.0-3.8	8.15	-0.30	18.80	4.11	-0.24	10.41	4.56	-0.37	13.14	3.52	-0.27	8.93
qSL.A8-2	A8	16.7-26.6	2.16	0.28	7.71									
qSL.C2	C2	43.1-55.3	3.06	0.18	7.09	3.48	0.24	9.6						
<i>qSL</i> .C3-1	C3	0.0-5.5	3.31	-0.18	7.02							3.14	-0.25	7.83
<i>qSL</i> .C3-2	C3	0.0-15.8				2.24	-0.18	5.86						
qSL.C4	C4	53.8-65.6										2.31	0.21	5.67
qSL.C6	C6	0.0-8.6	3.72	0.20	7.92							2.77	0.24	6.87
qSL.C9	C9	19.3-24.1	10.9	0.34	23.45	15.0	0.46	36.04	12.5	0.48	36.70	8.7	0.42	20.38
	1.0						1.00	6.0.1	1.20	2 1 0	10.00		205	
<i>qSS</i> .A8-1	A8	0.0-2.7	0.07	0.71	10.00	2.11	-1.82	6.04	4.38	-3.10	12.23	2.14	-2.05	6.16
<i>qSS</i> .A8-2	A8	9.3-10.8	2.36	2.71	10.60	2.37	3.40	10.15	• • • •		0.40	2.92	4.07	7.28
<i>qSS</i> .A8-3	A8	17.5-25.9				0.44	• • •	0.07	2.90	2.73	9.63			
<i>qSS</i> .A8-4	A8	19.7-26.3	2.52	2.35	8.35	2.41	2.83	8.27					0.01	15.01
<i>qSS</i> .C3-1	C3	0.0-5.2	3.59	-1.77	10.72	2.12	0.01			• • • •	0.00	5.79	-3.21	15.21
<i>qSS</i> .C3-2	C3	0.0-11.4	~~~~	4.0		3.42	-2.31	9.70	3.33	-2.06	9.83	aa 1	F O	
qSS.C9	C9	19.7-24.2	22.2	4.3	47.70	27.1	6.2	65.35	19.5	5.4	60.99	22.1	6.8	57.03
aSWA2-2	Δ2	0.0-19.0				2 25	0.22	8 34						
aSWA2-2	Δ2	24 0-24 8				3.67	0.22 0.42	10.98						
aSW A 2-3	Δ2	27.4-32.3	3 23	0.46	13 59	5.07	0.42	10.70						
$aSW A7_1$	A7	4 1-17 8	5.25	0.70	15.57	2.06	-0.20	6 28						
$aSW \Delta 7_{-2}$	Δ7	A7 5-66 7	3 1 1	0.23	10.38	2.00	0.20	11 70						
aSWC3	C^{3}	-10.0	2.11	0.23	7 30	2.13	0.27	7 10						
aSWC9	C9	19 8-24 5	12.01	-0.46	37 38	13 78	-0.47	37 21						

Development of NIL for the major QTL(*qSS.C9*) for seeds per silique (SS) on linkage groups C9

- Near-isogenic lines (BC_3F_2) for *qSS.C9* was produced by successively backcrossing the high SS parent Y106 with the recurrent parent HZ396.
- Construction of the local linkage map using SSR and AFLP markers linked to the *qSS.C9* locus
- QTL analysis in the BC_3F_2 population of HZ396×Y106

Phenotypic variations in the BC_3F_2 population

HZ396

Y106

Y106

genotype	NO.of plant	SS
HH(HZ396)	40	17.5 <u>+</u> 2.72
HY(Y106/HZ396)	77	29.3 <u>+</u> 1.83
YY(Y106)	35	29.7 <u>+</u> 2.32

χ2=0.41

■ Seed weight

Development of AFLP and SSR markers linked to *qSS.C9*

• To identify molecular markers linked to *qSS.C9*. Ten AFLP and five SSR markers linked to the locus were identified by bulked segregation analysis

Individuals of low-SS bulks Individuals of high-SS bulks BL BH PL PH

Fine mapping of qSS.C9

Year	Population	NO.of plant
2011	BC ₄ F ₁ (HZ296×Y106)	807
2012	BC ₄ F ₂ (HZ296×Y106)	16,466
	BC ₃ F ₂ (HZ296×W11)	1,088

• Comparative sequence analysis between parental lines showed that two genes would be likely the candidate genes of *qSS.C9*.

漫山遍野・油菜花

Thank

[Photo By Terry · TerryVision]

You