

Clubroot Resistance in Brassica rapa: Genetics, Functional Genomics and Marker-Assisted Breeding

Zhongyun Piao

Shenyang Agricultural University

Clubroot disease

- Clubroot disease is caused by *Plasmodiophora brassicae,* which specifically infect the crucifer plants
 - The infected plant has clubbed root and wilt in plant.
 - most dangerous disease in Brassica crops worldwide
 - decrease of yield about 10 15% in the world (Dioxin, 2009)

Clubroot disease in China

- It was firstly reported in 1955
- In resent years, it became the most serious problem in the cultivation area of **Brassica crops**, mainly Chinese cabbage, rapeseeds, zha-tsai and others

Control of clubroot disease

- Chemical / microbial fungicide control
 - Fluazinam, Cyazofamid: more expensive for farmers
 - Reduce disease index, less effective
- Agronomical practice control
 - or rotation: need more time, slightly diseased
 - application of lime: less effective

Control of clubroot disease

- Resistant breeding
 - most effective to control, and environmental friendly
 - identification of clubroot resistant (CR) genetic sources
 - characterize CR genes, including gene structure, inheritance and the model of gene action
 - the mechanism of resistance
 - CR breeding

Genetics of clubroot resistance in *B. rapa*

CR genetic resources in Brassica crops

Shenyang Agricultural University

The main CR resources in *B. rapa*

- Turnip (B. rapa ssp. rapifera)
 - □ ECD01 (B+C, *CRb*)
 - ECD02 (A+C, CRa)
 - ECD03 (A+B)
 - ECD04 (A+B+C)
 - Debra (CRc, CRk)
 - Siloga (Crr1, Crr2, Crr4)
 - Milan White (Crr3)

CR genes identified and mapped in *B. rapa*

CR gene identified and mapped in B. rapa

CR gene	CR origin	Chrom	Effect	Reference
Crr1	Siloga	A8	Major	Suwabe et al. (2006)
Crr2		A1	Modifier	
Crr4		A6	Minor	
Crr3	Milan White	A3	Major	Hirai et al. (2003)
CRa	ECD02	A3	Major	Matsumoto et al.(2005)
CRb	ECD01	A3	Major	Piao et al. (2004)
CRc	Debra	A3	Major	Sakamoto et al. (2008)
CRk	Debra	A2	Major	Sakamoto et al. (2008)

Pathotypes of P. brassicae in China

Province	Race	Province	Race
Yunan	1, <mark>2</mark> , 4 , 6, 7 , 10, 11,12, 13	Shanghai	2 , 5, 7
Tibet	2 , 4 , 5, 7	Sichuan	1, 4 , 5, 7 , 10, 15
Guizhou	4	Liaoning	2 , 4 , 11, 14
Anhui	2 , 4 , 9, 13	Jilin	4
Shandong	2 , 4 , 7	Hubei	4
Hunan	1, 4 , 9, 13		

- Race 4 distributed in different area are the same pathotype?
- A new clubroot differentiation set is needed with CR plants which carry known CR gene.

QTL mapping for clubroot resistance

Isolate-specific resistance of CR

Shenyang Agricultural University

Origin of the CR genes

CSSL constructed by integration of chromosome fragment of ECD04 into Chinese cabbage

A01	A02	A03	A04	A05	A06	A07	. A08	A09	A10
CSSI 59-10					· · · · · · · · ·				
CSSL24-18									
CSSL3-6									
CSSL4-10									
CSSL3-8									
CSSL11-28	_								
CSSI 7 20									
CSSL7-20									
CSSI 10-1									
CSSL11-21									
CSSL561									
CSSL12-5									
CSSL13-12	_		_						
CSSL12-1/	_								
CSSL10-3									
CSSI 20.1									
CSSI 24-18									
CSSSI4									
CSSL4-2									
CSSL16-1		_							
CSSL1080		-							
CSSL31-10				-			-		
CSSLZ1-10					-		_		
CSSI 34.2									
CSSI 35-4									
CSSL8-6									
CSSL35-4									
CSSL39-1									
CSSL40-10	_	-					_		
CSSL40-8					_	_	_		
CSSI 42-20		_							
CSSI 43.17									
CSSL44-2									
CSSL437									
CSSL40-1		-							
CSSL46-19						_	_		
CSSL41-1									
CSSI 51.8									
CSSI 1074									
CSSL30-21									
CSSL54-29									
CSSL55-5									
CSSL56-2									
CSSL57-14	_								
CSSI 60.13									
CSSI 59-10									
CSSL61-2									
CSSL61-6									
CSSL37-8									
CSSL63-24									
CSSL64-1	_								
CSSI 28 26									
CSSI 65.12									
CSSI66-2									
Consensus									
l enend	0	A	H						

Shenyang Agricultural University

QTL mapping of clubroot resistance

- In siloga, clubroot resistance is isolate-specific
 - *Crr1* region possible also with the aids of *CRb* (*CRa*) against race 10
 - □ CRb (CRa) to race 4
 - CRb (CRa) to the mixture of race 4 and race 10
 - Are there any unknown interaction between different pathotypes?

Analysis of epistatic interaction

Clubroot resistance is also
 controlled by epistatic
 interaction between
 CR QTL and non-CR QTL

Maker for QTL-a	Maker for QTL- b	Epistasis	Epistasis- value	H ² (%)	<i>P</i> value
sau_um026 (A3)	BRMS019 (A10)	AA	-0.2739	0.0797	0.0006

Isolate-specific resistance of *CR* genes

CR gene	Race
Crr1, Crr3, CRa, PbBa1.1 + PbBa3.1	2
Crr1+Crr2+Crr4, PbBa8.1	4
CRc	K04
CRk	2, K04
CRb	2, 4, 8
PbBa1.1 + PbBa3.3	7
PbBa3.2	10

Are these CR genes resistance to other pathotype?

Inheritance of CR genes in B. rapa

- Single gene or QTL, depend on the CR resources
 - □ Single gene: Crr3, CRa, CRb, CRc, CRk
 - **QTL** (Turnip) :
 - Crr1, Crr2, Crr4, CRb (CRa) (Siloga)
 - PbBa1.1, PbBa3.1, PbBa3.2, PbBa3.3 and PbBa8.1 (ECD04)
- Dominant or incomplete dominant
 - Dominant: Crr3, CRa, CRb, CRc, CRk
 - Incomplete dominant: Crr1 and Crr2

Fine mapping of the CRb gene

А

В

A total of 2,896 and
1,486 (susceptible plants selected from ^{0.51} 0.51
5,800) F2 individuals
were used for fine mapping of *CRb*.
67 recombinants

6 cnu_m413 0.04 TCR79 cnu_m413 0.11 15 CRb 2 CRb0.03 TCR05 5 TCR108 0.01 TCR01 TCR31 26 0.19 TCR30 TCR37 TCR74 0.01 TCR05 TCR17 0.11 15 TCR01 R S Η

Zhang et al. in press

С

were found

Candidates of the CRb genes

Shenyang Agricultural University

CRa is not identical to CRb

Shenyang Agricultural University

Conclusion

- 1. Clubroot resistance is controlled either by single gene or polygenes depend on the CR germplasm.
- 2. Ten CR genes were identified in B. rapa.
- 3. *CR* genes are isolate-specific.
- 4. Epistatic effects is also present in clubroot resistance.
- 5. *CR* genes might be originated by at least 3 common ancestors.
- 6. *CRa* and *CRb* are not the same gene.

Functional Genomics of Clubroot Resistance in B. rapa

- PAMPs: pathogenassociated molecular patterns
- PRRs:pattern recognition receptors
- PTI: PAMP-triggered immunity
- ETI: Pathogen effectorstriggered immunity

Boller and Felix, 2009

Life cycle of *P. brassicae*

Primary infection of P. brassicae into CR line

www.syau.edu.cn

Statistics of illumina 100 reads and comparison to the *B. rapa* reference genome

Samples	Times	Total reads	Total	Mapped reads %		
_	(hai) nucl		nucleotides	Uniq	Multiple	
CR NIL	0	22,595,546	4,563,380,909	76.0	2.3	
	12	23,182,353	4,681,760,927	76.3	2.4	
	72	19,372,251	3,912,648,648	75.7	2.3	
	96	23,484,527	4,743,122,682	76.2	2.3	
CS NIL	0	21,745,045	4,391,765,197	75.4	2.2	
	12	22,598,749	4,563,816,668	75.9	2.3	
	76	20,736,266	4,187,963,943	74.4	2.3	
	96	26,470,268	5,345,954,462	75.8	2.3	
Total		180,185,005	36.4 Gb			

Number of transcripts in the CR NIL that were differentially expressed (FDR<0.01, Fold change>2.0 or <-2.0) compared to CS NIL.

89 genes were down-regulated

76 genes were up-regulated

- A total of 165 unique genes related to 'defense response' were differentially expressed in CR NIL at various times after inoculation.
- Of these, 89 were up-regulated and 76 were down-regulated at 0, 12, 72, and 96 hai in CR NIL.
- Of these, only 16 genes were differentially regulated at each time point.

65 genes down-regulation

76 genes up-regulation

- A total of 137 unique genes that related to immune response in GO terms were up- or down regulated in CR NIL at various times after inoculation.
- Of these, 76 were up-regulated and 65 were down-regulated at 0, 12, 72, and/or 96 hai in CR NIL.
- Of these, 14 genes were differentially regulated at each time point.

Conclusion

- 1. Among the putative Chinese cabbage defence response genes identified (GO:0006952), 165 exhibited significant differences in expression between the CR and CS NILs.
- 2. Pathogen-associated molecular pattern (PAMP) receptors and the genes induced by these receptors were highly expressed at 0 hai in the CR NIL.

Breeding of Clubroot resistance in B. rapa

- Traditional breeding
- Marker-assisted breeding of single gene
- Pyramiding CR genes with linked markers

Marker-assisted breeding

CR12

CR17

青梗菜'CR 702'

Integration of CR genes into B. napus from ECD04

Shenyang Agricultural University

Some considerations in CR breeding

- ✤ Isolate-specific resistance of CR genes
 - Breeding and cultivation of CR cultivars resistance to specific pathotypes
- * Action of *CR* genes
 - ◆ Dominant genes → CMS or SI → F1 hybrid between CR parent (*CRa* and *CRb*) and non-CR parent

Some considerations in CR breeding

- Gene interaction with additive effects
 - interaction between CR genes (Crr1 and Crr2)
 - ✤ interaction between CR gene and non-CR loci
- Pyramiding CR genes from CR turnip or other CR resource for durable resistance
 - Transfer several genes simultaneously
 - Transfer CR gene to an elite line once a time, then combine them all

Acknowledgement

Shenyang Agricultural University

- Prof. Xiangqun Shen
- Ph. D students: Jingjing Chen, Teng Zhang, Hong Li,
- Master students: Pengpeng Li, Sha Yu, Chunsha Zhang,

Huazhong Agricultural University

- Prof. Chunyu Zhang
- Graduate student: Zhongxiang Zhan
- Supported by National Natural Science foundation of China

Thank you