

Assembly and validation of a draft genome of Brassica napus using skim genotyping by sequencing

David Edwards

University of Queensland

Overview

- Genome assembly challenges
- Validating genome assemblies
- Genotyping by sequencing
- Placing missing contigs
- Clustering based validation

ACPFG

The challenge of genome sequencing

The challenge of genome sequencing

Draft genome sequence of chickpea (*Cicer arietinum*) provides a resource for trait improvement

Rajeev K Varshney^{1,2}, Chi Song³, Rachit K Saxena¹, Sarwar Azam¹, Sheng Yu³, Andrew G Sharpe⁴, Steven Cannon⁵, Jongmin Baek⁶, Benjamin D Rosen⁶, Bunyamin Tar'an⁷, Teresa Millan⁸, Xudong Zhang³, Larissa D Ramsay⁴, Aiko Iwata⁹, Ying Wang³, William Nelson¹⁰, Andrew D Farmer¹¹, Pooran M Gaur¹, Carol Soderlund¹⁰, R Varma Penmetsa⁶, Chunyan Xu³, Arvind K Bharti¹¹, Weiming He³, Peter Winter¹², Shancen Zhao³, James K Hane¹³, Noelia Carrasquilla-Garcia⁶, Janet A Condie⁴, Hari D Upadhyaya¹, Ming-Cheng Luo⁶, Mahendar Thudi¹, C L L Gowda¹, Narendra P Singh¹⁴, Judith Lichtenzveig¹⁵, Krishna K Gali⁴, Josefa Rubio⁸, N Nadarajan¹⁶, Jaroslav Dolezel¹⁷, Kailash C Bansal¹⁸, Xun Xu³, David Edwards¹⁹, Gengyun Zhang³, Guenter Kahl²⁰, Juan Gil⁸, Karam B Singh^{13,21}, Swapan K Datta²², Scott A Jackson⁹, Jun Wang^{3,23} & Douglas R Cook⁶

Chickpea (*Cicer arietinum*) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ~738-Mb draft whole genome shotgun sequence of CDC Frontier, a *kabuli* incickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea—*desi* and *kabuli*. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.

Ruperao et al. The Plant Biotechnology Journal (in press)

Kabuli chickpea reference

ACPFG AUSTRALIAN AUSTRALIAN AUSTRALIAN FUNCTIONAL GENOMICS FULD

Kabuli chickpea reference

CPFG

Desi chickpea reference

How do we validate and fix a reference genome

- Determine SNPs by sequencing parents and running SGSautoSNP
- Low coverage skim sequence segregating population
- Map reads to the reference genome
- Call genotype where reads cover previously defined SNP
- Impute and clean to define haplotype blocks

Call genotype of previously predicted SNPs

ACPFG

Haplotype blocks

Т	A	G	G	Т	С	С	А	G	G	А	Т	А	А	Т
Ν	Т	С	С	А	G	G	С	Т	С	G	С	G	G	С
TN1	А	G	G	Т	С	С	А	G	G	А	Т	А	А	Т
TN2	A	G	G	т	С	С	А	G	G	А	т	А	А	т
TN3	т	С	С	А	G	G	С	G	G	А	т	А	А	Т
TN4	А	G	G	Т	С	С	А	G	G	А	Т	А	А	Т
TN5	т	С	С	А	G	G	С	Т	С	G	С	G	G	С
TN6	А	G	G	т	С	С	А	G	G	А	Т	А	А	Т
TN7	т	С	С	А	G	G	С	т	С	G	С	G	G	С

Pre imputation

CPFG

After imputation and cleaning

Genotyping by sequencing

- 92 double haploid Tapidor x Ningyou individuals
- Called SNPs for parents, assigned parental genotypes to all alleles in the population
- Used these alleles to
 - create genetic maps
 - place unplaced contigs
 - identify misplaced and chimeric contigs

GBS applications

Check for misplaced contigs based on recombination events shared between individuals

 Red:Tapidor, green: Ningyou, dark red: heterozygous allele, white: missing

Placing unplaced contigs: contigPlacer

- Compare unplaced contigs with all placed contigs
- Use metaSNPs
- Penalized Hamming distance to compare alleles between two SNPs
- Places unplaced contig next to the best possible placed contig
- Possible to reverse contig if latter half of contig fits better to best partner than first half

contigPlacer 1

Unplaced contig

contigPlacer 2

ACPFG

contigPlacer 3

Clustering

LG1

Placing contigs in Darmor

- Total size: 850 Mbp
- Was 645 Mbp placed in pseudomolecules
- Now 800 Mbp placed in pseudomolecules,
- 50 Mbp unplaced (contigs with no SNPs or chimeric)
- Genes on pseudomolecules from 63,904 to 75,955
- Only 3,528 genes remain unplaced

CPFG

Acknowledgements

Australian Government

Australian Research Council

Philipp Bayer Kenneth Chan Michal Lorenc Pradeep Ruperao Kaitao Lai Agnieszka Golicz Paul Visendi Paula Martinez Bhavna Hurgobin Huey Tyng Lee Juan Montenegro

Contact: Dave.Edwards@uq.edu.au

geneious

Jacqueline Batley Alice Hayward Emma Campbell Reece Tollenaere Salman Alamery Jessica Dalton-Morgan Satomi Hayashi

Jinling Meng Yan Long Boulos Chalhoub Harsh Raman Isobel Parkin Shengyi Liu Bart Lambert Benjamin Laga

Current Opinion Conferences

Agriculture and Climate Change

Adapting crops to increased uncertainty

Amsterdam, The Netherlands | 15-17 February, 2015

Supporting publication

Conference Chairs

David Edwards Australian Centre for Plant Functional Genomics School of Agriculture and Food Sciences University of Queensland, Australia

Giles E.D. Oldroyd Cell & Developmental Biology John Innes Centre, United Kingdom

Advisory Board

Jeff Bennetzen Jose Crossa Robert Henry Rodomiro Ortiz Andrew Paterson Kadambot Siddique Mark Sorrells Mark Tester Michael Udvardi Senthold Asseng Robin Buell

www.agricultureandclimatechange.com